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1.	 Introduction

The Internet-of-Things (IoT) enables a hype-connect-
ed society in which more and more things (e.g., con-
nected cars, flying drones, and houses) are connected 
and become smart, meaning they are able to sense 
and react on real-time situations by utilizing data from 
different sensors and data sources. All of these smart 
things are empowered by their backend services, which 
usually consist of a set of sophisticated data processing 
logics. One of the big challenges to make constraint IoT 
devices smart is to easily, fast, and efficiently orches-
trate their backend service logic so that they can react 
as fast as possible and utilize as much data as they can.

Unlike traditional big data analytics, the orchestration 
of IoT services must take into account the following is-
sues: 

(1)	 Data are constantly generated by sensors over 
time and it is not economically sustainable to 
send all raw data to the centralized cloud due to 
the high bandwidth cost and latency. More data 
processing must be dynamically offloaded to the 
edges close to data sources.  

(2)	 Data and derived knowledge must be shared and 
exchanged across devices, services, applications, 
and platforms. Such a hyper-connected IoT sys-
tem needs to manage thousands of linked IoT 
application executions in the same edge cloud en-
vironment with shared data resources. 

(3) 	System workloads are more dynamic. Devices, 
services, and end user applications appear, move 
around, reconnect, and disappear. This leads to 
constantly changing workloads. 

(4) 	Low latency and fast response time are required 
by many IoT services. 

(5) 	The backend infrastructure needs to manage 
highly heterogeneous and geo-distributed re-
sources of edge nodes at different layers. 

All of these technical issues introduce new challenges 
and lots of complexity for infrastructure providers to 
manage their IoT services. FogFlow is designed to take 
care of all these complex issues for infrastructure opera-
tors and to help them automatically and efficiently man-
age various IoT services within a shared and geo-dis-
tributed environment.  

As illustrated in Fig. 1, FogFlow provides a stan-
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dard-based and data-centric edge programming mod-
el for IoT service providers to easily and fast realize 
their services for various business demands. With its 
data-driven and optimized service orchestration mech-
anism, FogFlow helps infrastructure providers to au-
tomatically and efficiently manage thousands of cloud 
and edge nodes for city-scale IoT services to achieve 
optimized performance. In large scale IoT projects like 
Smart Cities or Smart Factories, FogFlow can therefore 
save development and operation cost, improve produc-
tivity, provide fast time-to-market, as well as increase 
scalability and stability. 

2.	 FogFlow

In FogFlow, an IoT service is defined as a data pro-
cessing flow represented by a graph of linked operators. 
An operator takes input from the IoT devices or from 
earlier parts of the processing flow. It performs the busi-
ness logic of the IoT service and passes the intermediate 
result to the next operator. An operator is realized as a 
dockerized application and instantiated by FogFlow to 
run as a task within a dedicated docker container. Tasks 
are linked with each other during runtime based on the 
data dependency of their inputs and outputs.

As illustrated by Fig. 2, IoT services are orchestrated 
as dynamic data processing flows between producers 
(e.g., sensors) and consumers (e.g., actuators or appli-
cations) to perform necessary data processing. The fol-
lowing steps are designed to carry out the orchestration 
of an IoT service. 

First, service developers create a service template to 
define the service logic, using the FogFlow Task Design-
er, which is a web-based graphical flow editor as shown 
in Fig. 3. The service template represents the abstract, 

static data processing logic of the IoT service, including 
the details on which operator is utilized to take which 
type of input for producing which type of output, and 
also when and how the operator should be triggered. 
Service providers can reuse the operators registered by 
others or implement their own operators. 

Once the service template is submitted, FogFlow will 
monitor the context of available data in its runtime sys-
tem to determine when and how the submitted service 
should be instantiated. For example, a flow can be started 
when a data item arrives at an IoT gateway. FogFlow de-

Fig. 2 High level model of FogFlow.

Fig. 3 FogFlow Task Designer.

Fig. 1 Value propositions of FogFlow.
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termines how many task instances are required for each 
operator and also the detailed configurations of each task 
instance. The data structure of all data flows is described 
based on the same standardized data model called NGSI1). 
Therefore, FogFlow can learn which type of data is created 
at which edge node. It then triggers and launches dynam-
ic data processing flows for each edge node based on the 
availability of registered context metadata.

Third, using some optimization algorithms, FogFlow 
decides where to deploy which task instance according 
to the real-time system context, including how much re-
sources are available on each edge node, where the data 
sources are located, and how the predicted workload is 
changing over time. 

As compared with other edge computing frameworks 
like Azure IoT Edge and Amazon Greengrass, FogFlow 
has the following unique features. 

Data-centric Programming: In FogFlow we can 
ease the design and usage of IoT services by providing 
a data-centric programming model for different roles 
to express their goals at different levels in a more da-
ta-centric and intuitive way. 

As shown in Fig. 4, at the operator level, operator 
providers just need to annotate which type of data their 
operators can handle, which functionality is provided, 
and which type of results are produced. At the service 
layer, service designers can easily compose different 
operators to form their service templates in just a few 
minutes. After that, during the runtime data process-
ing, flows can be automatically orchestrated by FogFlow 
based on the high level data usage intent defined by 
service users. 

Service users can be either data producers or result 
consumers. From the producer perspective, they can 
request which type of service logics to be applied to 
their data; while from the consumer perspective, they 
can request which type of results to be generated. What 
FogFlow does is to translate their high level data usage 
intents into concrete data processing flows and then 
deploy and maintain them seamlessly over cloud and 
edge nodes. More importantly, with this data-centric 
programming model and based on standard data model, 

Fig. 4 Different roles in FogFlow.

the underlying data processing flows can be shared and 
optimized across multiple services and users. FogFlow 
provides a unique basis for infrastructure providers to 
move towards a data-driven ecosystem and economy.

Autonomous Management: FogFlow can carry out 
IoT service orchestration decisions in a decentralized 
and autonomous manner. This means each FogFlow 
edge node can make its own decisions only based on a 
local context view. This way the majority of workloads 
can be directly handled at edges without always relying 
on the central cloud. With this “cloudless” approach, 
FogFlow can not only provide fast response time, but 
also achieve high scalability and reliability. 

 
Optimized Deployment: In FogFlow the task config-

uration and deployment of data processing flows is op-
timized for the cloud-edge environment to meet certain 
goals, for example, minimizing the internal data traffic 
between cloud and edge nodes, minimizing the latency 
to produce expected actionable results from raw data, 
or maximizing the accuracy of the produced results. The 
optimization of data processing flows not only happens 
at the beginning of launching a service, but also con-
tinues during the entire service lifetime. One of such 
optimization behaviors is dynamically migrating tasks 
from one edge to another edge in order to maintain the 
minimal response time for mobile objects like connected 
cars or flying drones. 

3.	 Edge Programming Models 

Currently the following two programing models are 
provided by FogFlow to support different types of work-
load patterns.

3.1 Service Topology

The first workload pattern is to trigger necessary pro-
cessing flows to produce some output data only when 
the output data are requested by consumers. To define 
an IoT service based on this pattern, the service provider 
needs to define a service topology, which consists of a set 
of linked operators and each operator is annotated with 
a specific granularity. The granularity of an operator will 
be taken into account by FogFlow to decide how many 
task instances of such an operator should be instantiated 
based on the available data. A service topology must be 
triggered explicitly by a requirement object issued by a 
consumer or any application. The requirement object de-
fines which part of processing logic in the defined service 
topology needs to be triggered and it can also optionally 
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define a specific geo-scope to filter out data sources for 
applying the triggered processing logic. More details can 
be seen in our previous paper2) and the online tutorial3). 

3.2 Fog Function

The second workload pattern is designed for the sce-
nario in which service designers do not a-priori know 
the exact sequence of stream processing steps. Instead 
they can define a fog function to include a specific op-
erator for handling a given type of information. FogFlow 
can then create the graph of processing flows based on 
this description of all fog functions. 

Different from service topology, a fog function is a 
very simple topology with only one operator and it is 
triggered when its input data become available. As Fog-
Flow can automatically chain different fog functions as 
well as allow more than one fog functions to handle a 
new data item, a constantly changing execution graph 
can be automatically triggered and managed by the Fog-
Flow runtime as data arrive and disappear. 

From the design perspective, fog function is more 
flexible than service topology, because the overall pro-
cessing logic of an IoT service can be easily changed 
over time by adding or removing fog functions when the 
service processing logic needs to be modified for new 
business requirements. With the fog function program-
ming model, FogFlow can support serverless computing 
for a cloud-edge based environment.  

4.	 Use Cases

This section explains how FogFlow programming mod-
els can be used by service providers to realize different 
smart IoT services. Two concrete use case examples are 
introduced: the first one is based on service topology 
while the second one is based on fog function.

4.1 Lost Child Finder

This use case is to find a lost child as soon as possible 
by taking advantage of edge computing enabled by Fog-
Flow. Assume that there are lots of cameras deployed in 
a smart city and also inside stadiums. As part of the city 
infrastructure, some edge nodes like IoT Gateway are 
deployed in many different fields of the city to be man-
aged by FogFlow for supporting various IoT services. 

One service that can be easily realized based on Fog-
Flow is to find a lost child using the service topology 
illustrated by Fig. 5. The designed service topology 
consists of three different operators: Face Extraction 
that can recognize and extract face images from camera 

video streams, Feature Generation that calculates the 
feature vector for each detected face, and Face Matching 
that compares detected faces with the face of the lost 
child in terms of their feature vectors. Different granular-
ity is defined with each operator in the service topology, 
for example, Face Matching is instantiated per child while 
the other two operators are instantiated per camera. 

To trigger this service topology, an external application 
issues a requirement and also subscribes to the output 
result of the Face Matching operator. By changing the 
geo-scope defined in the requirement, the external ap-
plication can control FogFlow to orchestrate this service 
topology for a changing geo-scope, so that we can first 
search for the child in a small scope and then expand the 
searching scope step by step if the child is not found. 

In this use case the external application as a consum-
er is very simply because all the complexity of how to 
dynamically orchestrate the data processing flows for a 
changing geo-scope is handled by FogFlow. In addition, 
according to our experiment, we can also reduce band-
width consumption by 95% as compared with a cloud-
based approach. 

4.2 Smart Parking

We implemented this use case together with our Eu-
ropean project partner, University of Murcia, based on 
the real scenario of Murcia City. In Murcia, there are 

Fig. 5 Lost child finder.
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Fig. 6 Smart parking.

Fig. 7 Integration with other FIWARE GEs.

two types of parking sites, regulated parking zones that 
are operated by the city government and can provide 
historical information of how parking slots are used per 
day, and private parking sites that are operated by pri-
vate companies and can provide real-time availability 
of parking spots. By utilizing these two types of data 
sources and other public transportation information, our 
Smart Parking service can provide real-time and person-
alized parking recommendation for each driver. 

In this use case, it is not easy to apply service topology, 
but using fog function to realize the required data pro-
cessing logic is straightforward. As illustrated by Fig. 6, 
we just need to design and implement dedicated fog func-
tions for each physical object involved in the use case. For 
example, one fog function for each public site to predict 
how many parking spots are available per 10 minutes 
based on their historical information; two fog functions 
for each connected car, one to estimate its arrival time 
according to the traffic situation on the way and the other 
to calculate at which park site the driver can get a park-
ing spot on arrival. The deployment of those fog function 
instances are placed on the edge node close to their input 
data sources so that FogFlow can help to reduce more 
than 50% bandwidth consumption and also provide re-
al-time parking recommendation for each driver. 

5.	 Interworking with FIWARE 

Since November 2017 FogFlow has been promoted as 
an incubated open source Generic Enabler (GE) in the 
FIWARE community4). Within this community, FogFlow 
holds a unique position as Cloud-Edge Orchestrator 
to launch and manage dynamic data processing flows 
seamlessly over cloud and edges for data ingestion, 
transformation, and also advanced analytics. As illus-

trated by Fig. 7, FogFlow can interwork with other FI-
WARE GEs to power FIWARE-based IoT Platforms at the 
following two layers.

At the upper layer, FogFlow can interwork with Orion 
Broker via the standardized NGSI interface in the follow-
ing two ways. The first one is to consider Orion Broker as 
the destination of any context information generated by 
a FogFlow IoT service. In this case a NGSI subscription 
must be issued by an external application or FogFlow 
Dashboard to ask FogFlow to forward the requested con-
text updates to a specified Orion Broker. The second one 
is to consider Orion Broker as a data source to provide 
additional information. In this case we can implement a 
simple fog function to fetch any necessary information 
into the FogFlow system. In either way there is no need 
to make any change to the existing Orion-based FIWARE 
system. Therefore, this type of integration can be done 
fast with nearly zero effort.

At the low layer, for the integration with any Non-NGSI 
supported devices like MQTT, COAP, OneM2M, OPC-UA, 
LoRaWAN, FogFlow can reuse the modules of existing 
IoT agents and transform them into FogFlow adapters 
based on the fog function programming model. With 
these adapters FogFlow can dynamically launch neces-
sary adapters for device integration directly at edges. 
This way, FogFlow can and is able to talk with a wide 
range of IoT devices.  

6.	 Conclusion

FogFlow is a distributed execution framework to or-
chestrate IoT services by managing their dynamic data 
processing flows over cloud and edges in a seamless and 
scalable manner. This article introduces its design goals, 
key technology features, and business value propositions. 
We also briefly explain its programming models, including 
service topology for on-demand data processing and fog 
function for serverless edge computing. Two use cases 
are presented to illustrate how these two programming 
models can be used to realize city-scale IoT services. 
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