
Special Issue on Sustainable Data-driven City Management

FogFlow: Orchestrating IoT Services over Cloud and
Edges
CHENG Bin, KOVACS Ernoe, KITAZAWA Atsushi, TERASAWA Kazuyuki, HADA Tooru, TAKEUCHI Mamoru

1.	 Introduction

The Internet-of-Things (IoT) enables a hype-connect-
ed society in which more and more things (e.g., con-
nected cars, flying drones, and houses) are connected
and become smart, meaning they are able to sense
and react on real-time situations by utilizing data from
different sensors and data sources. All of these smart
things are empowered by their backend services, which
usually consist of a set of sophisticated data processing
logics. One of the big challenges to make constraint IoT
devices smart is to easily, fast, and efficiently orches-
trate their backend service logic so that they can react
as fast as possible and utilize as much data as they can.

Unlike traditional big data analytics, the orchestration
of IoT services must take into account the following is-
sues:

(1)	 Data are constantly generated by sensors over
time and it is not economically sustainable to
send all raw data to the centralized cloud due to
the high bandwidth cost and latency. More data
processing must be dynamically offloaded to the
edges close to data sources.

(2)	 Data and derived knowledge must be shared and
exchanged across devices, services, applications,
and platforms. Such a hyper-connected IoT sys-
tem needs to manage thousands of linked IoT
application executions in the same edge cloud en-
vironment with shared data resources.

(3) 	System workloads are more dynamic. Devices,
services, and end user applications appear, move
around, reconnect, and disappear. This leads to
constantly changing workloads.

(4) 	Low latency and fast response time are required
by many IoT services.

(5) 	The backend infrastructure needs to manage
highly heterogeneous and geo-distributed re-
sources of edge nodes at different layers.

All of these technical issues introduce new challenges
and lots of complexity for infrastructure providers to
manage their IoT services. FogFlow is designed to take
care of all these complex issues for infrastructure opera-
tors and to help them automatically and efficiently man-
age various IoT services within a shared and geo-dis-
tributed environment.

As illustrated in Fig. 1, FogFlow provides a stan-

Nowadays IoT infrastructure providers for smart city, smart industry, and connected vehicles are facing huge
complexity and cost to manage their geo-distributed infrastructures for supporting various IoT services, espe-
cially those that require low latency. FogFlow is a distributed execution framework to dynamically orchestrate
IoT services over cloud and edges, in order to reduce internal bandwidth consumption and offer low latency. By
providing automated and optimized IoT service orchestration with high scalability and reliability, FogFlow helps
infrastructure providers to largely reduce their operation cost. FogFlow also provides a data-centric programming
model and a development tool chain for service developers and system integrators to quickly realize IoT services
with low development cost and fast time-to-market. This has been proven in the labs as well as in real smart city
projects done by NEC Solution Innovators.　

Internet of Things, edge computing, serverless computing, service orchestration, dynamic data flow
Keywords

Abstract

City Management Technologies

NEC Technical Journal／Vol.13 No.1／Special Issue on Sustainable Data-driven City Management48

dard-based and data-centric edge programming mod-
el for IoT service providers to easily and fast realize
their services for various business demands. With its
data-driven and optimized service orchestration mech-
anism, FogFlow helps infrastructure providers to au-
tomatically and efficiently manage thousands of cloud
and edge nodes for city-scale IoT services to achieve
optimized performance. In large scale IoT projects like
Smart Cities or Smart Factories, FogFlow can therefore
save development and operation cost, improve produc-
tivity, provide fast time-to-market, as well as increase
scalability and stability.

2.	 FogFlow

In FogFlow, an IoT service is defined as a data pro-
cessing flow represented by a graph of linked operators.
An operator takes input from the IoT devices or from
earlier parts of the processing flow. It performs the busi-
ness logic of the IoT service and passes the intermediate
result to the next operator. An operator is realized as a
dockerized application and instantiated by FogFlow to
run as a task within a dedicated docker container. Tasks
are linked with each other during runtime based on the
data dependency of their inputs and outputs.

As illustrated by Fig. 2, IoT services are orchestrated
as dynamic data processing flows between producers
(e.g., sensors) and consumers (e.g., actuators or appli-
cations) to perform necessary data processing. The fol-
lowing steps are designed to carry out the orchestration
of an IoT service.

First, service developers create a service template to
define the service logic, using the FogFlow Task Design-
er, which is a web-based graphical flow editor as shown
in Fig. 3. The service template represents the abstract,

static data processing logic of the IoT service, including
the details on which operator is utilized to take which
type of input for producing which type of output, and
also when and how the operator should be triggered.
Service providers can reuse the operators registered by
others or implement their own operators.

Once the service template is submitted, FogFlow will
monitor the context of available data in its runtime sys-
tem to determine when and how the submitted service
should be instantiated. For example, a flow can be started
when a data item arrives at an IoT gateway. FogFlow de-

Fig. 2 High level model of FogFlow.

Fig. 3 FogFlow Task Designer.

Fig. 1 Value propositions of FogFlow.

easy & fast

developer

FogFlow

D1C1

B1

A1 A2

s1 s2 s3

DA
B

C

New business
requirements Data-centric

edge programming model

operator

zero effort

Data-driven
Orchestration

Autonomous
management

Optimized
deployment

• Fast time-to-market
• Low development and operation cost
• High efficiency, scalability, and reliability

cloud
Geo-distributed
infrastructure

edges

devices

B1

C1 D1

A1

s1 s2 s3

A2

Producers
(sensors)

Consumers
(actuators)

cloud

edge edge edge

FogFlow

Data context

Service
template System

context

dynamic
data flows

Raw data

timely results

City Management Technologies

FogFlow: Orchestrating IoT Services over Cloud and Edges

NEC Technical Journal／Vol.13 No.1／Special Issue on Sustainable Data-driven City Management 49

termines how many task instances are required for each
operator and also the detailed configurations of each task
instance. The data structure of all data flows is described
based on the same standardized data model called NGSI1).
Therefore, FogFlow can learn which type of data is created
at which edge node. It then triggers and launches dynam-
ic data processing flows for each edge node based on the
availability of registered context metadata.

Third, using some optimization algorithms, FogFlow
decides where to deploy which task instance according
to the real-time system context, including how much re-
sources are available on each edge node, where the data
sources are located, and how the predicted workload is
changing over time.

As compared with other edge computing frameworks
like Azure IoT Edge and Amazon Greengrass, FogFlow
has the following unique features.

Data-centric Programming: In FogFlow we can
ease the design and usage of IoT services by providing
a data-centric programming model for different roles
to express their goals at different levels in a more da-
ta-centric and intuitive way.

As shown in Fig. 4, at the operator level, operator
providers just need to annotate which type of data their
operators can handle, which functionality is provided,
and which type of results are produced. At the service
layer, service designers can easily compose different
operators to form their service templates in just a few
minutes. After that, during the runtime data process-
ing, flows can be automatically orchestrated by FogFlow
based on the high level data usage intent defined by
service users.

Service users can be either data producers or result
consumers. From the producer perspective, they can
request which type of service logics to be applied to
their data; while from the consumer perspective, they
can request which type of results to be generated. What
FogFlow does is to translate their high level data usage
intents into concrete data processing flows and then
deploy and maintain them seamlessly over cloud and
edge nodes. More importantly, with this data-centric
programming model and based on standard data model,

Fig. 4 Different roles in FogFlow.

the underlying data processing flows can be shared and
optimized across multiple services and users. FogFlow
provides a unique basis for infrastructure providers to
move towards a data-driven ecosystem and economy.

Autonomous Management: FogFlow can carry out
IoT service orchestration decisions in a decentralized
and autonomous manner. This means each FogFlow
edge node can make its own decisions only based on a
local context view. This way the majority of workloads
can be directly handled at edges without always relying
on the central cloud. With this “cloudless” approach,
FogFlow can not only provide fast response time, but
also achieve high scalability and reliability.

Optimized Deployment: In FogFlow the task config-

uration and deployment of data processing flows is op-
timized for the cloud-edge environment to meet certain
goals, for example, minimizing the internal data traffic
between cloud and edge nodes, minimizing the latency
to produce expected actionable results from raw data,
or maximizing the accuracy of the produced results. The
optimization of data processing flows not only happens
at the beginning of launching a service, but also con-
tinues during the entire service lifetime. One of such
optimization behaviors is dynamically migrating tasks
from one edge to another edge in order to maintain the
minimal response time for mobile objects like connected
cars or flying drones.

3.	 Edge Programming Models

Currently the following two programing models are
provided by FogFlow to support different types of work-
load patterns.

3.1 Service Topology

The first workload pattern is to trigger necessary pro-
cessing flows to produce some output data only when
the output data are requested by consumers. To define
an IoT service based on this pattern, the service provider
needs to define a service topology, which consists of a set
of linked operators and each operator is annotated with
a specific granularity. The granularity of an operator will
be taken into account by FogFlow to decide how many
task instances of such an operator should be instantiated
based on the available data. A service topology must be
triggered explicitly by a requirement object issued by a
consumer or any application. The requirement object de-
fines which part of processing logic in the defined service
topology needs to be triggered and it can also optionally

Operators

Service
template

Usage intent

Data

Data stream

Data availability

Data usageService users
(producer/consumer)

Service designer

Operator provider

City Management Technologies

FogFlow: Orchestrating IoT Services over Cloud and Edges

NEC Technical Journal／Vol.13 No.1／Special Issue on Sustainable Data-driven City Management50

define a specific geo-scope to filter out data sources for
applying the triggered processing logic. More details can
be seen in our previous paper2) and the online tutorial3).

3.2 Fog Function

The second workload pattern is designed for the sce-
nario in which service designers do not a-priori know
the exact sequence of stream processing steps. Instead
they can define a fog function to include a specific op-
erator for handling a given type of information. FogFlow
can then create the graph of processing flows based on
this description of all fog functions.

Different from service topology, a fog function is a
very simple topology with only one operator and it is
triggered when its input data become available. As Fog-
Flow can automatically chain different fog functions as
well as allow more than one fog functions to handle a
new data item, a constantly changing execution graph
can be automatically triggered and managed by the Fog-
Flow runtime as data arrive and disappear.

From the design perspective, fog function is more
flexible than service topology, because the overall pro-
cessing logic of an IoT service can be easily changed
over time by adding or removing fog functions when the
service processing logic needs to be modified for new
business requirements. With the fog function program-
ming model, FogFlow can support serverless computing
for a cloud-edge based environment.

4.	 Use Cases

This section explains how FogFlow programming mod-
els can be used by service providers to realize different
smart IoT services. Two concrete use case examples are
introduced: the first one is based on service topology
while the second one is based on fog function.

4.1 Lost Child Finder

This use case is to find a lost child as soon as possible
by taking advantage of edge computing enabled by Fog-
Flow. Assume that there are lots of cameras deployed in
a smart city and also inside stadiums. As part of the city
infrastructure, some edge nodes like IoT Gateway are
deployed in many different fields of the city to be man-
aged by FogFlow for supporting various IoT services.

One service that can be easily realized based on Fog-
Flow is to find a lost child using the service topology
illustrated by Fig. 5. The designed service topology
consists of three different operators: Face Extraction
that can recognize and extract face images from camera

video streams, Feature Generation that calculates the
feature vector for each detected face, and Face Matching
that compares detected faces with the face of the lost
child in terms of their feature vectors. Different granular-
ity is defined with each operator in the service topology,
for example, Face Matching is instantiated per child while
the other two operators are instantiated per camera.

To trigger this service topology, an external application
issues a requirement and also subscribes to the output
result of the Face Matching operator. By changing the
geo-scope defined in the requirement, the external ap-
plication can control FogFlow to orchestrate this service
topology for a changing geo-scope, so that we can first
search for the child in a small scope and then expand the
searching scope step by step if the child is not found.

In this use case the external application as a consum-
er is very simply because all the complexity of how to
dynamically orchestrate the data processing flows for a
changing geo-scope is handled by FogFlow. In addition,
according to our experiment, we can also reduce band-
width consumption by 95% as compared with a cloud-
based approach.

4.2 Smart Parking

We implemented this use case together with our Eu-
ropean project partner, University of Murcia, based on
the real scenario of Murcia City. In Murcia, there are

Fig. 5 Lost child finder.

Face
matching

Cameras

Lost child

Feature
Generation

Face
Extraction

Picture of the
lost child

per camera

per child

per camera

City Management Technologies

FogFlow: Orchestrating IoT Services over Cloud and Edges

NEC Technical Journal／Vol.13 No.1／Special Issue on Sustainable Data-driven City Management 51

Fig. 6 Smart parking.

Fig. 7 Integration with other FIWARE GEs.

two types of parking sites, regulated parking zones that
are operated by the city government and can provide
historical information of how parking slots are used per
day, and private parking sites that are operated by pri-
vate companies and can provide real-time availability
of parking spots. By utilizing these two types of data
sources and other public transportation information, our
Smart Parking service can provide real-time and person-
alized parking recommendation for each driver.

In this use case, it is not easy to apply service topology,
but using fog function to realize the required data pro-
cessing logic is straightforward. As illustrated by Fig. 6,
we just need to design and implement dedicated fog func-
tions for each physical object involved in the use case. For
example, one fog function for each public site to predict
how many parking spots are available per 10 minutes
based on their historical information; two fog functions
for each connected car, one to estimate its arrival time
according to the traffic situation on the way and the other
to calculate at which park site the driver can get a park-
ing spot on arrival. The deployment of those fog function
instances are placed on the edge node close to their input
data sources so that FogFlow can help to reduce more
than 50% bandwidth consumption and also provide re-
al-time parking recommendation for each driver.

5.	 Interworking with FIWARE

Since November 2017 FogFlow has been promoted as
an incubated open source Generic Enabler (GE) in the
FIWARE community4). Within this community, FogFlow
holds a unique position as Cloud-Edge Orchestrator
to launch and manage dynamic data processing flows
seamlessly over cloud and edges for data ingestion,
transformation, and also advanced analytics. As illus-

trated by Fig. 7, FogFlow can interwork with other FI-
WARE GEs to power FIWARE-based IoT Platforms at the
following two layers.

At the upper layer, FogFlow can interwork with Orion
Broker via the standardized NGSI interface in the follow-
ing two ways. The first one is to consider Orion Broker as
the destination of any context information generated by
a FogFlow IoT service. In this case a NGSI subscription
must be issued by an external application or FogFlow
Dashboard to ask FogFlow to forward the requested con-
text updates to a specified Orion Broker. The second one
is to consider Orion Broker as a data source to provide
additional information. In this case we can implement a
simple fog function to fetch any necessary information
into the FogFlow system. In either way there is no need
to make any change to the existing Orion-based FIWARE
system. Therefore, this type of integration can be done
fast with nearly zero effort.

At the low layer, for the integration with any Non-NGSI
supported devices like MQTT, COAP, OneM2M, OPC-UA,
LoRaWAN, FogFlow can reuse the modules of existing
IoT agents and transform them into FogFlow adapters
based on the fog function programming model. With
these adapters FogFlow can dynamically launch neces-
sary adapters for device integration directly at edges.
This way, FogFlow can and is able to talk with a wide
range of IoT devices.

6.	 Conclusion

FogFlow is a distributed execution framework to or-
chestrate IoT services by managing their dynamic data
processing flows over cloud and edges in a seamless and
scalable manner. This article introduces its design goals,
key technology features, and business value propositions.
We also briefly explain its programming models, including
service topology for on-demand data processing and fog
function for serverless edge computing. Two use cases
are presented to illustrate how these two programming
models can be used to realize city-scale IoT services.

Connected
car

Private
site

Public
site

Prediction

Arrival time
estimation

Recommender

Personalized and real-time
recommendation on where to park

Real-time
estimation

Orion
Processing

tasks
FogFlow

NGSI
subscription

FIWARE
APPS

Other
GE(s)

sensors actuators

FogFlow
Dashboard

e.g. Cygnus

non-NGSI
devices

Adapter(s)
(e.g., openMTC,

IoT Agent)
NGSI

NGSI
notify

City Management Technologies

FogFlow: Orchestrating IoT Services over Cloud and Edges

NEC Technical Journal／Vol.13 No.1／Special Issue on Sustainable Data-driven City Management52

Authors’ Profiles

CHENG Bin
Senior Researcher
NEC Laboratories Europe

KOVACS Ernoe
Senior Manager
NEC Laboratories Europe

KITAZAWA Atsushi
Professional Fellow
NEC Solution Innovators

TERASAWA Kazuyuki
Senior Manager
Future City Development Division

HADA Tooru
Executive Expert
IoT Platform Solutions Division
NEC Solution Innovators

TAKEUCHI Mamoru
Manager
IoT Platform Solutions Division
NEC Solution Innovators

FogFlow has been promoted as an open source FI-
WARE GE and it can easily interwork with other FIWARE
GE. As a standard-based and data-driven edge comput-
ing framework, FogFlow provides a unique basis for in-
frastructure providers to make their infrastructure open
towards a data-driven ecosystem and economy.

Reference
1)	 NGSI data model
	 http://fiware.github.io/specifications/ngsiv2/stable/
2)	 B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa

and A. Kitazawa: FogFlow: Easy Programming of IoT
Services Over Cloud and Edges for Smart Cities, IEEE
Internet of Things Journal, Volume 5, Issue 2,pp.696-
707, April 2018

3)	 FogFlow Tutorial
	 http://fogflow.readthedocs.io
4)	 NEC Press release: NEC Develops a FIWARE-based Fog

Computing Framework for Edge-based IoT Services,
November 2017

	 https://uk.nec.com/en_GB/press/201711/20171127_01.html

City Management Technologies

FogFlow: Orchestrating IoT Services over Cloud and Edges

NEC Technical Journal／Vol.13 No.1／Special Issue on Sustainable Data-driven City Management 53

Thank you for reading the paper.
If you are interested in the NEC Technical Journal, you can also read other papers on our website.

Link to NEC Technical Journal website

Vol.13 No.1 Sustainable Data-driven City Management

Remarks for Special Issue on Sustainable Data-driven City Management
Start-up of Data Utilization-type Smart Cities

Papers for Special Issue

Vision for Data-driven City Management
Global Perspective for Data-Leveraged Smart City Initiatives
A Paradigm Shift in City Management Practices Targets the Sustainable Society

Demonstration and Implementation Examples of Data-driven Smart Cities
Case Study of Data-driven City Management in Cities Abroad
Building a Common Smart City Platform Utilizing FIWARE (Case Study of Takamatsu City)
Initiatives to revitalize regional economies by advancing “OMOTENASHI”
— Hospitality offered to foreign visitors to Japan
Case Studies of Data Utilization by Municipal Governments:
Applying Data in Various Fields Such as Financial Affairs, Childcare, and Community Revitalization

City Management Technologies
FIWARE, Information Platform for Implementing Data Utilization Based City Management
FogFlow: Orchestrating IoT Services over Cloud and Edges
Security Requirements and Technologies for Smart City IoT
European Trends in Standardization for Smart Cities and Society 5.0
City Evaluation Index Standards and their Use Cases

Co-creation with Local Communities
An Introduction to “Partnership for Smart City Takamatsu” as a Platform to Engage in Local Co-creation Activities
Launch of Setouchi DMO — A Co-Creation Venture That Goes beyond the Conventional ICT Framework
Community Co-creation Based on a Comprehensive Cooperation Agreement
A Common-Sense Approach to the Future — Study Group for Co-creation of New Municipal Services

General Papers

Spin-Current Thermoelectric Conversion — Informatics-Based Materials Development and Scope of Applications
Reducing the Power Consumption and Increasing the Performance of IoT Devices by Using NanoBridge-FPGA
Development of Nano-carbon Materials for IoT Device Applications
Proof of Concept of Blockchain Technology in the Field of Finance Using Hyperledger Fabric 1.0

NEC Information

NEWS
2017 C&C Prize Ceremony

Vol.13 No.1　
November 2018

Special Issue TOP

Information about the NEC Technical Journal

Japanese English

https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180101.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180102.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180103.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180104.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180105.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180106.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180107.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180107.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180108.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180108.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180109.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180110.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180111.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180112.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180113.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180114.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180115.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180116.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180117.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180118.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180119.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180120.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180121.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180122.pdf?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/g1801pa.html?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/g18/n01/g1801pa.html?fromPDF_E7101
https://jpn.nec.com/techrep/journal/index.html?fromPDF_E7101
https://www.nec.com/en/global/techrep/journal/index.html?fromPDF_E7101

